Dijkstra's Algorithm
and
Floyd-Warshall's Algorithm



Quick Intro to Graph Theory

Example: Airport Fares

R1100

Johannesbur g R

Verte:a{ Edge Weight



DFS (Depth-First Search)

Visits all the vertices in a graph from a starting
vertex. Tries to get as far away from the starting
vertex as possible before coming back.

(F > |
Possible DFS Traversal
oooo A,B,D,F,C,G,E



BFS (Breadth-First Search)

Also Visits all the vertices in a graph from a
starting vertex. However, visits them in order of
their 'depth’ from the starting vertex.

(F > |
Possible BFS Traversal
PG> ABGEDFG



Problem Statement

How do we find the shortest path between two
vertices on a weighted graph?

Example

What is the length of the
shortest path from B to E?




Moving on from BFS

We can't use a BFS here because the graph is
weighted.

The problem here is that vertices on the graph are
no longer visited in the same order of closest to
the source first.



Introducing Dijkstra's Algorithm

A small modification to BFS can be made to
ensure the correct order is maintained.

We replace the BFS's queue with a Priority
Queue. Vertices are added to the Priority Queue
by their distance away from the source.



Using a Priority Queue(C++)

#include <queue>

class Vertex

{
public:

bool operator<(const Vertex& v) const;

};

priority _queue<Vertex> pq; // Vertex must overload < operator.



Using a Priority Queue(Java)

class Vertex implements Comparable

{

public int compareTo(Vertex v)

(.

PriorityQueue<Vertex> pq; // Vertex must implement Comparable



Run-time

The run-time of Djikstras' depends on how the
Priority Queue is implemented.

Linked List/Array: O(|V|*2)
Binomial Heap: O(|E|log|V|)




Djikstra's Algorithm

We need to keep track of several things with the
vertices.

* If the vertex has been visited (initially false).
* Distance from the source (initially infinite).



Pseudocode

set source distance to 0
add source to priority queue
while priority queue is not empty
vertex = top of priority queue
remove top element
If vertex is not visited
mark vertex as visited
for each neighbour of vertex
if neighbour is not visited
If neighbour distance > vertex distance + edge weight from
vertex to neighbour
set neighbour distance to vertex distance + edge
weight from vertex to neighbour
add neighbour to priority queue



Example

Lets head back to our original example.

Find the length of the shortest path
from B to E.




Example(cont)

Priority Queue: B(0)



Example(cont)

Priority Queue: C(1), A(3)



Example(cont)

Priority Queue: A(3), D(3)



Example(cont)

Priority Queue: D(3), E(15)



Example(cont)

Priority Queue: E(8) E(15)



Example(cont)

Priority Queue: E(15)



Example(cont)

No more vertices are on the queue and we have
our answer: 8



Floyd-Warshall's Algorithm

Another way of solving the same problem is Floyd-

Warshall's Algorithm.
Advantages:

* Much easier to code.
* You get more. All pairs of shortest paths are
solved.

Disadvantages:

* Slower. O(V"3).

* Harder to understand.



Pseudocode

Initialise dists to the adjacency matrix of the graph
for(int k = 0; kK < N; ++K)
{
for(inti = 0; 1< N; ++I)
{
for(intj = 0; j < N; ++j)
{
distsJi][j] = min(dist[i][j], dist[i][k] + dist[K][]);
|
]
|



Floyd-Warshall's Algorithm

Why does it work?

It works by iteratively choosing a vertex on the
graph as a 'waypoint.' If the path through the
waypoint is shorter than the current shortest path
the shortest path cost is updated.



Example

Adjacency Matrix:

0 3 o7 12
301 ©
ol 02 o
/[ 2 0 5
12 00 5 0




Example(cont)

Adjacency Matrix:

0 3 o7 12
301 1015
ol 02 o
/7620 5
1215050




Example(cont)

Adjacency Matrix:

0347 12
3011015
4102 16
/7620 5
12151650




Example(cont)

Adjacency Matrix:

0346 12
3013 15
4102 16
6 320 5
121516 50




Example(cont)

Adjacency Matrix:

0340611
3013 8
4102 7
6 320 5
118 7 5 0




Example(cont)

Adjacency Matrix:

0346 11
3013
4 102
6 320
18 7 5

O O1 N oo

The algorithm has finished with 8 as the answer.



